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VERY LARGE SCALE OPTIMIZATION

1.0 Introduction

Schmit [1 ] introduced numerical optimization to the engineering community in 1960 by solving a two variable

structural optimization problem. This was the classical 3-bar truss and it represented the first time finite element

analysis and nonlinear optimization was combined into a single program. Since that time, thousands of research

papers have been published on this subject and the optimization algorithms have been continually enhanced and

refined, along with the methods for formulating and solving engineering problems. This is particularly true in the

area of structural optimization with the use of formal approximations [2 -4]. Today, several commercial structural

optimization programs are available to solve a wide range of design tasks.

Figure 1 shows the general trend in problem size in engineering since 1960 and projected to 2010. While there is

considerable scatter in the actual problem size solved over the years (for example, results with hundreds of

variables using optimality criteria were published in the 1970s), the general growth in broad based applications
has been as shown.

With this increased problem size, we have exceeded the capabilities of most current optimization algorithms and

this has motivated the effort reported here. An interesting outcome of this study has been that we have re-created

a modem version of methods popular in the 1960s.

The principal difficulties with present methods are that, as problem size grows, they require considerable computer

memory and they internally take a great deal of computational effort.

The BIGDOT software created here overcomes the key problems encountered with existing software and also

offers some very attractive features.

1. It requires very little computer memory.

2. It does not solve a complex and time intensive direction finding problem.

3. It handles redundant constraints (constraints with the same values and gradients) easily.

4. It deals with equality constraints with no loss in efficiency or reliability.

5. It solves discrete variable problems to efficiently produce a "good" discrete solution.

6. It scales very well. That is, the efficiency is about the same regardless of problem size.

The BIGDOT program has been tested extensively, both on mathematical test cases and on real structural

optimization problems. As shown in Figure 1, we have already solved an optimization problem in excess of

135,000 variables. This was a topology optimization problem where we maximized stiffness subject to mass limits

using the GENESIS [5] software from Vanderplaats Research & Development, Inc. (VR&D). Additionally, as

shown in the example section, we have solved 50,000 variable fully constrained problems.
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Figure 1 Trends in Engineering Optimization Problem Size

The original goal of this proj ect was to develop methods for solving structural optimization problems

with very large numbers of design variables and large numbers of critical constraints. As the project

progressed, it became apparent that the methods being developed were applicable to general optimiza-

tion tasks and not just structural optimization. Therefore, the resulting BIGDOT program is not

restricted in any way to structural applications.

The basic requirements were to develop methods for solving nonlinear constrained optimization

problems in excess of 10,000 variables. Key issues include efficiency, reliability, memory require-

ments, and gradient calculation requirements.

As part of this effort, an algorithm was developed to include discrete variables in the optimization task.

Based on the success of this part of the effort, the resulting program was modified to consider strictly

unconstrained problems in addition to the original target of dealing with constrained problems.

Based on the theoretical developments, a general purpose optimization program was created, called

BIGDOT, which is already used by the GENESIS structural optimization software from VR&D.

Here, we will first define the general optimization problem and identify candidate algorithms. We will

then focus on the final algorithms that were chosen for software development. Test cases are provided

to demonstrate the efficiency and reliability of the methods and software created here. It is concluded

that we now have commercial optimization software capable of solving nonlinear constrained optimi-

zation problems with tens of thousands of design variables and without any intrinsic limits on the
number of constraints.



2.0 General Problem Statement

The general nonlinear optimization problem is [6];

Minimize F(X) Objective Function (1)

Subject to;

gj (X) < 0

hk(X ) = 0

j = 1, m General Linear and Nonlinear Inequality Constraints (2)

k = 1, 1 General Linear and Nonlinear Equality Constraints (3)

L U
X i _ X i _ X i i = 1, n Side Constraints (4)

Xi e Si (5)

The objective and constraint functions may be linear or nonlinear. The inequality constraints defined

by Equation 2 and equality constraints defined by Equation 3 may or may not exist. That is, the problem

may be unconstrained. The side constraints defined by Equation 4 also may or may not exist. If side

constraints are not needed for one or more variables, their values are set to be a large negative number

for the lower bound and large positive number for the upper bound. Side constraints may be included
for unconstrained functions.

Equality constraints defined by Equation 3 are not considered explicitly here. Instead, equality

constraints may be included as two equal and opposite inequality constraints.

The design variables can be contained in a set of allowed values given by Equation 5. The set of allowed

values may be a general set of discrete values or may be integer values. If a set of allowed values is not

provided for a given design variable, that variable is continuous. Thus, any design variable may be

continuous, discrete or integer.

This definition of the design problem is extremely general. Prior to this project, we were able to

routinely solve such problems with (typically) up to a few hundred variables with no specific limit on

the number of constraints. The methods and software developed here extend the problem size to tens

of thousands of design variables, also with no specific limit on the number of constraints. The price

paid for this is that the optimization efficiency, as measured by the number of function and gradient

evaluations, is about twenty to thirty percent of that of existing methods.

3.0 Present Methods

Presently, the DOT optimizer from VR&D contains three algorithms [7];

1. Modified Method of Feasible Directions (MMFD).

2. Sequential Linear Programming (SLP).

3. Sequential Quadratic Programming (SQP).
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Eachof thesemethodshasits ownattractivefeatures.However,theyall havetwothingsin common;

1. Theyrequirestorageof thegradientsof manyconstraints.

2. Theyeachrequiresolutionof asub-problem,eithertofindasearchdirectionor(in thecaseof SLP
andSQP)to solveasub-optimizationproblem.

Thisis notasignificantissueif therearealargenumberof designvariables,butonly afewcriticalor
nearcriticalconstraints,includingsideconstraints.However,if therearealargenumberof criticalor
nearcriticalconstraints(includingsideconstraints),both thestoragerequirementsandthecomputa-
tionalcostsrisequitedramatically.Also, for suchproblems,experienceshowsthatreliabilitydimin-
ishesasthenumberof activeconstraintsincreases.

As optimizationbecomesmoreacceptedby theengineeringcommunity,theproblemsizehasrapidly
increased,quicklyreachingthelimits of currentmethods.

Therefore,it is reasonableto addressmethodsthatmaynotbeasefficient,in termsof thenumberof
function andgradientcalculations,asthe threemethodslisted above,but requirerelatively little
computationaltime in the direction-findingsub-problem,andwith limited storage.This was the
motivationfor thepresentstudy.

4.0 Candidate Methods

The Sequential Unconstrained Minimization Technique (SUMT) approach offers a way to solve very

large problems with minimum memory requirements while avoiding solution of a large direction

finding sub-problem. Here, we identify several SUMT approaches which were studied in order to find

the most reliable method. Reliability is more important than efficiency. Thus, it is recognized that while

the cost of solving the optimization problem will grow, we will be able to solve problems of a size in

excess of anything possible today. Interest in the Operations Research community has recently focused

on SUMT, with emphasis on interior point methods, for solving large problems [8]. For nonlinear

engineering problems considered here, we have found that a revised exterior penalty function tech-

niques meets our needs best.

Sequential Linear Programming (SLP) with adjustable move limits deserves note here since such an

approach is reasonably reliable and we are able to solve very large LP problems [9, 10]. However, while

reliable, very large LP problems can themselves become inefficient. More importantly, in structural

optimization we have high quality nonlinear approximations available. Therefore, we would like to

utilize the high quality of the approximations if possible, rather than losing the higher order information

that is available. While we could sequentially linearize the nonlinear approximations, this would add

another iterative loop with limited reliability, and so this is not considered to be a viable approach.

4.1 Sequential Unconstrained Minimization Techniques (SUMT)

SUMT was a very popular approach in the 1960's, where the original constrained problem was

converted to a sequence of unconstrained problems [11]. This was a natural approach because

unconstrained minimization techniques were reasonably well developed. As research in optimization

algorithms progressed, other methods were shown to be more efficient and reliable for "Typical"

optimization problems. However, as problem size has grown, it has been found that the more modem

methods can become computationally inefficient. Thus, especially for structural optimization using

approximation techniques, a new look at SUMT is appropriate.



ThebasicSUMTapproachis to;

Minimize O(X) = F(X) + P(X) (6)

whereO(X) iscalledthepseudo-objective function and the penalty term, P(X), depends on the method

being used. This general approach is described in some detail in Reference 6. The key distinction of

each method is the form of P(X).

During this project, the following methods were considered;

1. Exterior Penalty Function

2. Interior Penalty Function, Reciprocal

3. Interior Penalty Function, Original Log Barrier

4. Interior Penalty Function, Polyak's Log Barrier

5. Interior Penalty Function, Polyak's Log-Sigmoid

6. Interior Penalty Function, Linear Extended Penalty

7. Interior Penalty Function, Quadratic Extended Penalty

8. Interior Penalty Function, Variable Extended Penalty

9. Augmented Lagrange Multiplier Method

10. Duality Theory

4.1.1 Exterior Penalty Function

The exterior penalty is the easiest to incorporate into the optimization process. Here the penalty

function P(X) is typically given by [6]

m l

P(X) = rp Z {MAX[0, gj(X)]} 2 +rp Z [hk(X)]2 (7)

j 1 k 1

The subscript p is the outer loop counter which we will call the cycle number.

We begin with a small value of the penalty parameter, rp, and minimize the pseudo-obj ective function,

O(X). We then increase rp and repeat the process until convergence.

4.1.2 Interior Penalty Function

The basic concept of the interior penalty is that, as the constraints approach zero (from the negative

side), the penalty grows to drive the design away from the constraint bounds [11].

Reciprocal

In the past, a common penalty function used for the interior method was
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Ill

-1
P(X) = _ (8)

gj(X)
j=l

Using Equation 6 and including equality constraints via the exterior penalty function of Equation 7,

m l

*(X, rp rp) = F(X)+ ' _ 71 +rp Z [hk(X)]2 (9)

, rp J = 1gj(X) k = 1

/

Here rp is initially a large number, and is decreased as the optimization progresses.

The last term on Equation 9 is the exterior penalty as before, because we wish to drive hk(X ) to zero.

Also, rp has the same definition as before and F(X) is the original objective function.

In our remaining discussion, we will omit the equality constraints, remembering that they are normally

added as an exterior penalty function as in Equation 9.

Log Barrier Method

An alternative form of Equation 9 is

Ill

/

P(X) = rp _-log[-gj(X)]

j=l

and this is often recommended as being slightly better numerically conditioned.

(10)

Polyak's Log Barrier Method

Polyak [8, 12] suggests a modified log-barrier function which has features of both the extended penalty

function and the Augmented Lagrange multiplier method described in Section 4.1.4.

The modified logarithmic barrier penalty function is defined as:

M

M(X,rp, _P) = -rp Z L log 1 g

j=l rp _1

where the nomenclature has been changed to be consistent with the present discussion.

Using this, we create the pseudo-obj ective function

(11)

m

• (X,r;, _P) = F(X)- r; Z )_Plog[1 g±x!l
j=l rp J

(12)

We only consider inequality constraints and ignore side constraints. Equality constraints can be treated

using the exterior penalty function approach and side constraints can be considered directly in the

optimization problem. Alternatively, equality constraints can be treated as two equal and opposite



inequalityconstraintsbecausethis methodactsmuch like an extendedpenaltyfunctionmethod,
allowingfor constraintviolations.

Thefirst orderoptimalityconditionsare:

m p

gxqTP(X'r; '_p) = gxV(X) q- Z _J

gj(x)]Vxgj(X) (13)
j=l 1 r; J

The update for the Lagrange multipliers is:

P

p+l _J if gj(X) < krp (14))_j -

[1 gj(X!-]rbJ

P

p + 1 _J if
_j

2rp (1-k) gj(X) > krp (15)

where k <1.0. Typically, k = 0.8.

gj(X) 7By using the log 1 -r7p .] we allow gj (X) to be as positive as rp . This dictates that our initial

choiceofrp must be greater than the maximum violated constraint value. Ifno constraints are violated,

we can pick an initial rp to make the value of the objective function and the penalty function equal.

When solving the unconstrained sub-problem, care must be taken with the one-dimensional search to

insure that we are always inside the barrier, where the penalty function becomes undefined, just as in

the case of the interior penalty function method.

This method has been tested by the author and others using quadratic functions and it has been shown

to have strong theoretical characteristics for this class of problems.

Polyak's Log-Sigmoid Method

A more recent method by Polyak, et al [13] appears to have better properties than the log-barrier

method by eliminating the barrier. Here, we create the penalty function as;

II1

P(X) = r_ _1 )_p{ln[1 + erpgj(X)] - ln(2)}
j=

The update for the Lagrange multipliers is:

(16)
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p+1 2_P
_j =

[1+ e rpgj(X)]
(17)

4.1.3 Extended Interior Penalty Function

This approach attempts to incorporate the best features of the reciprocal interior and exterior methods

for inequality constraints. For equality constraints, the exterior penalty is used as before and so is

omitted here for brevity.

The Linear Extended Penalty Function

The first application of extended penalty functions in engineering design is attributable to Kavlie and

Moe [14]. This concept was revised and improved upon by Cassis and Schmit [15]. Here the penalty

function used in Equation 6 takes the form

where

Ill

P(X) = _ _j(X) (18)

j=l

1

_j(X) - gj(X) if gj(X) < e (19)

2_ - gj (X) if gj (X) > _ (20)gj(X) -- 2

The parameter e is a small negative number which marks the transition from the interior penalty given

by Equation 8 to the extended penalty given by Equation 20.

If a sequence of improving feasible designs is to be produced, it is necessary to choose e so that the
/

pseudo-objective function _(X, rp ) has a positive slope at the constraint boundary. Haftka and

Starnes [18] recommend that e be defined by

= -C(rp)a _<a<_l 1 (21)

where C is a constant. At the beginning of the optimization, they choose _ in the range -0.3 _<_ _<-0.1.
/

Also, they pick the initial rp so that the two terms on the right-hand side of Equation 6 are equal. This

defines the value of C to be used in Equation 21. Now, at the beginning of each unconstrained

minimization, _ is defined by Equation 21 and is kept constant throughout that unconstrained minimi-

zation. While this definition of _ was created in conjunction with the quadratic extended penalty

function, it works here also. Equation 21 provides the desired feature of maintaining the minimum of

the unconstrained function inside the feasible region. A similar approach which was developed for use

in the linear extended penalty function method is given by Cassis [16, 17].



The Quadratic Extended Penalty Function

The extended penalty given by Equations 18 - 20 is defined as the linear extended penalty function.

This function is continuous and has continuous first derivatives at gj(X) = _. However, the second

derivative is discontinuous, and so if a second-order method is used for unconstrained minimization,

some numerical problems may result. Haftka and Starnes [18] overcome this by creating a quadratic

extended penalty function as

1 if (gj(X) < _) (22)
_j(X) - gj(X)

-iI[-gJ(X)l=_3[gJ@] +3}gj(X) = _-[k_J
if (gj(X) > e) (23)

Equations 22 and 23 may be most useful if a second-order method is used for unconstrained

minimization. However, the price paid for this second-order continuity is that the degree of nonlinearity

of the pseudo-objective function is increased.

The Variable Penalty Function

Both the exterior and interior penalty function methods have been used with success. The significant

modifications to these traditional methods have been related to improving the numerical conditioning

of the optimization problem, as exemplified by the extended interior methods. A formulation is

presented by Prasad [19] which offers a general class of penalty functions and also avoids the

occurrence of extremely large numerical values for the penalty associated with large constraint
violations.

The variable penalty function approach creates a penalty which is dependent on three parameters: s, A,
and _ as follows:

For s ;e 1,

[-gj(x)]l s

 j(x) = s--] if (gj(X) < _) (24)

__ +sr<x>_j(X) (A[gJ_ X) i] 3 2L _: i] 2-

if (gj(X) > _)

and for s = 1,

(25)

_j(X) = - log[-gj(X)l if (gj(X) < e) (26)

10



2 (x) 7

1J - log(-e) if (gj(X) > e) (27)(X) 3+ 1Fgj(X) 1] --[gJ7gj(X) = a[gJ_ 1] 2L-_

The parameters s and A are used to create a class of penalty functions. That is, Equations 24 and 25

includes each class of extended penalty functions we have discussed.

The small negative number e is defined the same as for the extended penalty function method and is

the transition to the extended penalty. Prasad recommends that e be defined as follows:

e = - _(r;) q (28)

1 < q < _1 for s > 0 (29)where 2 +-----_- - s

and [3 is a positive constant chosen so e is initially near zero, say e = - 0.01. Note the similarity of

Equations 21 and 28.

The final parameter A controls the shape of the extended penalty. On the first iteration of the

unconstrained minimization subproblem

ifall gj(X) _ 0

l+s
A - (30)

3

and if some gj(X) > 0

A = 1-s(c*/e-1) (31)
3(c*/e- 1) 2

where c* is the value of the most-violated constraint. On subsequent unconstrained minimizations,

Equations 30 - 31 are used if all constraints are satisfied. If all constraints are violated

A - s (32)
6(1 - c*/e)

If only a portion of the constraints are violated, the maximum value of A given by Equations 30 and 32
are used.

Figure 2 qualitatively compares the various penalty function methods considered here. The variable

penalty function, although more complicated to use, ensures second-order continuity at the transition

point and, for badly violated constraints, the penalty does not increase at the same dramatic rate as the

quadratic extended penalty. However, for badly violated constraints, the penalty may begin to decrease

so we must take care to deal with this possibility.

11



Interior

penalty

Feasible

region

- Polyak s
log-barrier
function

i_ / f Quadratic
. ( extended

, _ penally

. • v...___ Variable/ ! .
y ." penalty

#_¢¢¢

_- Linear

extended

penalty

hffeasible

region

0
,_ g(x)

Figure 2 Qualitative comparison of penalty function methods.

4.1.4 Augmented Lagrange Multiplier Method

The Augmented Lagrange Multiplier (ALM) method uses the augmented Lagrangian [24, 25]

m l{ }A(X,_,,rp) = F(X)+ E [_'j/l/j rpgtj]+ _k+mhk(X)+rp[hk(X)] 2

j=l 1

-_j

where /l/j = max[gj(X), E]

The update formulas for the Lagrange multipliers are now

(33)

(34)
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 jp+l:+2rp{max[gj X  2rpj,j = 1, m (35)

_P++ml = _p+m + 2rphk(X) k = 1, 1 (36)

The ALM method is generally considered to be more robust than the interior or exterior methods.

4.1.5 Duality Theory

Using the knowledge that (X*,)_*) defines a saddle point of the Lagrangian, we know that this will

correspond to a maximum with respect to )_ and a minimum with respect to X. Thus, we can define the

Lagrangian in terms of)_ alone as

L(Z) = minL(X, Z) (37)
x

Now since L(Z) is a maximum with respect to Z at the optimum, we wish to maximize L(Z), or

max L()_) = max min L(X, )_)
;_ ;_ x

Alternatively, we could state this as an equivalent min-max problem as

(38)

min L(X) = min max L(X, Z) (39)
x x )_

We can now expressly define the primal and dual problems. The primal problem is the same as we have
seen before

Minimize: F(X) (40)

Subject to:

gj(X) < 0 j = 1, m (41)

hk(X ) = 0 k = 1,1 (42)

1 u
X i < X i < X i (43)

We now state the dual optimization problem as

Maximize: L()_) (44)

13



Subject to:

)_j_> 0 j = 1, m (45)

_m + k unrestricted in sign, k = 1, 1 (46)

Now we call the Lagrange multipliers dual variables. If we could solve the primal problem, then we

could retrieve the dual variables X*. Similarly, it may be possible in some cases to solve the dual

problem and then retrieve the optimum primal variables X*. Depending on the form of the approxima-

tions to structural responses, Schmit and Fleury have shown that duality theory may offer a good

candidate for structural synthesis, including discrete variables[26, 27]

4.2 Choosing A Method

While each of these methods has its strong features, several were quickly eliminated based on

computational considerations. These were the interior methods which are discontinuous at the con-

straint boundaries (methods 2, 3 and 4), as well as methods which, experience has shown, do not offer

either computational or theoretical advantages (methods 6, 7, and 8).

The remaining methods (1, 5, 9 and 10) were chosen for further study.

Table 1 briefly compares the important features of each of the selected methods.

Table 1 Comparison of Methods

METHOD FEATURES

Exterior Penalty Function Easy to program. Reliable. Approaches the optimum
Method from outside the feasible region. Easily deals with

equality constraints and redundant constraints.

Polyak's Log Sigmoid
Method

Augmented Lagrange
Multiplier Method

Duality Theory

Many of the features of the original log penalty function
and the extended penalty function method. Strong theo-
retical basis. Early studies are encouraging. Difficulty if

constraint becomes non-active because the Lagrange
multiplier goes to zero and cannot be recovered if the

constraint later becomes active.

Considered best of the "traditional" penalty function
methods. Adjusts both the penalty parameter and the
Lagrange Multipliers as optimization progresses. Can
approach the optimum fro m the feasible or infeasible

region.

Good if theproblem can be approximated well as a sepa-
rable task. Good candidate for discrete variables, though

theoretically weak.
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4.2.1 Prototype Software

A prototype software code was created to test the algorithms listed above. Numerous tests were

performed to demonstrate the feasibility of using these techniques for structural optimization. Com-

parisons are made with the methods contained in the existing DOT software.

Duality Theory was dropped from the study because it solves a convex approximation which is often

not valid for general optimization tasks and because of difficulties with discrete variables which require

solving a complex and time consuming sub-problem to deal with discontinuous derivatives.

Polyak's Log Sigmoid method was dropped because we were unable to create a reliable code in the

presence on numerical inaccuracies. For example, when constraints become inactive during the

optimization, their Lagrange multiplier goes to zero. There is no direct way in the algorithm to calculate

a proper multiplier later if the constraint again becomes active. This causes numerical difficulties even

for active constraints that become very slightly feasible. Thus, while we were able to make the

algorithm find a near optimum quickly, a precise optimum could not be reliably achieved.

Finally, the Augmented Lagrange Multiplier method was dropped because, at least theoretically, it

requires retaining all constraints. This generates large storage requirements which are undesirable in

the present context.

This left the Exterior Penalty Function method as the method of choice. However, this method was

modified to consider individual penalties for each constraint. While these penalty parameters are

conceptually similar to the Lagrange multipliers in the Augmented Lagrange Multiplier method, a

unique proprietary algorithm was created to estimate their values.

Here, the original constrained optimization problem is converted to a sequence of unconstrained

problems of the form;

Minimize

Ill

(I)(X) = F(X) +rp _ qP{MAX[0, gj(X)]} 2 (47)

j=l

Subject to;

X)<X i<X_ J i = 1, n (48)

where X is the vector of design variables, F(X) is the objective function and gj(X) are the constraints.

The subscript/superscript, p is the outer loop counter which we will call the cycle number. The penalty

parameter, rp, is initially set to a small value and then increased after each design cycle. The only

difference between this formulation and the traditional exterior penalty function is the addition of

P
individual penalty parameters, qj , on each constraint. These multipliers are similar to the Lagrange

multipliers used in the Augmented Lagrange Multiplier Method [24], but are calculated by a propri-

etary formula. Equation 48 imposes limits on the design variables (side constraints) which are handled

directly.

If equality constraints are considered, they can just be converted to two equal and opposite inequality
constraints.

15



The unconstrained penalized function defined by Equation 47 is solved by the Fletcher-Reeves

conjugate direction method [28].

The gradient of _(X) is required during the optimization process.

Ill

V_(X) = VF(X) + 2rp _ qP{MAX[0, gj(X)Vgj(X)I } (49)

j 1

Here, the choice of the exterior penalty function becomes apparent because only gradients of violated

constraints are required. Furthermore, it is not necessary to store all gradients at once. Noting that

Equation 49 is a simple addition of gradient vectors, in the limit, we can calculate only one gradient

(objective or constraint) at a time.

As an indication of computer memory required by various methods, the proposed method is compared

with the three methods used by the DOT program. This is presented in Table 2, where MMFD is the

Modified Method of Feasible Directions, SLP is the Sequential Linear Programming Method and SQP

is the Sequential Quadratic Programming Method.

Table 2 Storage Requirements

Number of Design Variables

Method 100 1,000 10,000

MMFD 53,000 5,000,000 5x108

SLP 113,000 11,000,000 llX108

SQP 119,000 11,500,000 12X108

Proposed 1,400 14,000 140,000

Method To To To

11,000 1,000,000 10X107

The memory requirements for the DOT methods are the number of words for storage of all internal

arrays. For the proposed method, the two memory requirements are the minimum, where only 1

gradient vector is calculated at a time, and the maximum, were all possible gradients are stored in

memory. In this calculation, the number of constraints equals the number of design variables. In

practice, many more constraints may be considered, in which case DOT requirements will increase but

BIGDOT requirements will not.

As can be seen, as the problem size grows, storage requirements for the present methods grow

exponentially. However, for the proposed method, storage is much less and the requirement grows only

linearly with problem size. If there are many more constraints than design variables, the requested

storage for the present methods grows even more rapidly.

As noted above, the unconstrained minimization sub-problem is solved by the Fletcher-Reeves

algorithm. Here, letting q be the iteration number in the unconstrained sub-problem, the search

direction is found as;
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Ifq = 1

S q = -V_(X 0)

If q> 1

(5O)

sq = _g(i)(xq 1) -t- _S q 1

where

(51)

= V_(Xq 1)2S (52)

V_(X q 2) 2

In the present study, once the search direction is calculated, the one-dimensional search is performed

using polynomial interpolation.

It can be argued that more modem quasi-Newton methods such as the Broydon-Fletcher-Goldfarb-

Shanno method [29 - 32] are a better choice for solving the sub-problem. However, these methods

require much more storage. Also, computational experience has shown that the Fletcher-Reeves

algorithm is comparable in efficiency and reliability if carefully programmed.

During the unconstrained minimization sub-problem, almost no effort is required to calculate the

search direction, so the computational time spent in the optimizer itself is negligible. The cost of

optimization is almost completely the cost of analysis and gradient computations. Thus, it is desirable

that high quality approximations are available, as is the case in modem structural optimization.

4.3 Discrete Variable Optimization

As mentioned above, Duality theory was a candidate for solving discrete variable problems, but was

rejected as inefficient and because it requires significant memory. Thus, we looked for another

approach for solving discrete variable problem. It is known that the "theoretically correct" branch and

bound method is hopelessly inefficient for problems in excess of only a few variables [33, 34].

Our goal is to create an algorithm that will find a "good" discrete optimum very efficiently with large

numbers of variables and constraints. To achieve this, we created a very simple penalty function

approach which is quite similar to the method of Shin, Gurdal and Griffen [35].

The approach used here is as follows;

1. Solve the continuous variable problem.

2. Beginning with the continuous solution, add penalty terms which will drive the discrete variables

to the next lower or higher value.

Two methods were considered here. The first is an added penalty function of the form;

NDV

P(X) = R _ (X i L u- X i )(X i - Xi) (53)
i=l
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where X) is the next lower discrete value and X U is the next higher discrete value.

The second is a sin function form of this added penalty;

NDV,[ .... ]}P(X) = R E 0"5ll-sin2rc Xi-0"25(X_+3xU) (54)

These are similar to the penalty functions of Reference 35. However, unlike Reference 35, we

concluded that the sin form is most reliable and therefore, this is the method used in the BIGDOT

program.

During this phase of the optimization, it is important to include the original penalty function as well to

maintain feasibility with respect to the general constraints.

Equation 54 attempts to drive the variables to a discrete value. However, this penalty function creates

numerous relative minima and has little assurance of insuring feasibility with respect to the original

constraints or of actually driving all discrete variables to a discrete value. Therefore, after several

cycles, progress is evaluated. If all discrete variables are not driven to an allowed value, we ask how to

change each variable such that it will move to a discrete value with minimum effect on the objective

function and at the same time maintaining feasibility with respect to the original constraints.

To achieve this, we first get the gradient of the objective function and the penalty term of the pseudo-

objective function, with the penalty multipliers set to unity (get the sum of violated constraint

gradients).

The general algorithm for this is;

1. Including only discrete variables, and bypassing variables that are already at a discrete value,

search for MAX P_0_-Zi

Calculate the changes in X i that will move X i to its next larger and smaller discrete value.

For each such 8X i estimate the maximum constraint value based on a linear approximation.

.

3.

4.

5.

This algorithm drives the

Move X i to the discrete value that maintains feasibility.

Repeat from step 1 until all discrete variables are at a discrete value.

design variables to a discrete value while still including the original

constraints via the original SUMT algorithm. This has the limitation that variables can move only one

discrete value up or down from the continuous solution.

The final algorithm finds a feasible, discrete solution efficiently and seldom fails. However, it must be

remembered that this is not guaranteed to be a theoretical optimum, only a good discrete solution.

This algorithm has the advantage that it is a straightforward addition to the continuous variable
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algorithmandthatit requiresverylittle memoryandcomputationaleffort.

4.4 The BIGDOT Optimization Software

The algorithm described above has been coded for commercial application and distribution under the

name "BIGDOT," and the general, continuous variable algorithm has been presented at a technical

conference [36] The discrete variable capability will be presented at the MDO conference in Septem-

ber, 2002 [37]. The usage of BIGDOT is very similar to that of VR&D's current optimization software,

DOT. In fact, current users of DOT can include BIGDOT by calling an intermediate program called

ALLDOT. When calling ALLDOT with METHOD = 1, 2 or 3, the DOT algorithms will be used. If

ALLDOT is called with METHOD = 4, the SUMT algorithm outlined here is used.

A complete users manual has been created for BIGDOT [38] and the program has been ported to

numerous computers. BIGDOT has been added to the GENESIS structural optimization program [5]

from VR&D and has successfully solved structural optimization problems in excess of 135,000 design
variables.

In the following section, examples are offered to demonstrate the BIGDOT.

4.5 Test Case - Unconstrained Minimization of a Spring - Mass System

First consider an unconstrained minimization problem. Figure 3 shows a simple spring system

supporting weights at the connections between the springs. This system can be analyzed to determine

the equilibrium position by minimizing the total potential energy of the system. We can create a

problem of whatever size we choose using simple formulas.

Y

x

(a) Undeformed position

i-----+x

(b) Deformed position

Figure 3 Spring-Mass System
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Here we will assume the system is comprised of N masses and N+I springs, shown in the undeformed

position at the top of the figure and the deformed position at the bottom. While the coordinate system

shown is for the total system, we can threat the displacements of the masses as design variables, so the

initial design is all zeros.

The deformation of spring i is

AL i [(Xi+ 1 Xi)2 + (yi+ 1 yi)2] 1/2 0.... Li (55)

where the length L ° of each spring is taken to be the total length divided by N+I.

The stiffness of spring i is taken to be

K i = 500 + 200 - i N/m (56)

Mass Wj is defined to be

Wj = 50j N (57)

wherej corresponds to the joint where Wj is applied.

Note that if Ki = Constant and Wj = Constant, the deformed shape should be a symmetric parabola.

The total potential energy, PE, is now

N+I N

1 2 (58)PE = Z 5 KiALi + Z WjYj=I
i 1 j 1

where PE has units of Newton-meters and the coordinates are positive as shown in the figure.

The objective is now to minimize PE and the are 2N design variables, being the X and Y displacements.

Here, the gradient of the objective function is calculated analytically.

For discrete variable optimization, the design variables are chosen in increments of 0.1.

In each case, the initial objective function value is 0.0. The optimum value will be different depending

on the number of masses and springs.

The BIGDOT solutions are
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Table 3 Optimization Results

OPTIMUM OPTIMUM
PARAMETER N=5,000 N=12,500

(NDV=10,000) (NDV=25,000)

ContinuousOptimization

OPTIMUM
N=25,000

(NDV=50,000)

OBJECTIVE -2.57X10 9 -1.97X101° -8.76X101°

NUMBER OF 1 1 1
CYCLES

FUNCTION 507 507 507
EVALUATIONS

GRADIENT 100 100 100
EVALUATIONS

Additional Computations for Discrete Optimization

OBJECTIVE -2.28X109 -1.72X101° -5.12X101°

NUMBER OF 5 6 5
CYCLES

FUNCTION 146 215 151
EVALUATIONS

27 41 28GRADIENT
EVALUATIONS

The program provided here (Appendix A) allows the user to input the number of masses, N=NMASS,

as well as the print control value. Here, N = 5,000, 12,500 and 25,000 was used, to create problems of

10,000, 25,000 and 50,000 design variables, respectively. You may change NMASS to increase or

decrease the problem size. The program is dimensioned to allow a value ofNMASS (N) up to 25,000,

to yield 50,000 design variables. If you wish to solve even larger problems, be sure to increase the array
sizes.

The computer program for this example is given in Listing 1 and the output for the 10,000 variable

example is given in Listing 2 in Appendix A.

4.6 Cantilevered Beam

The cantilevered beam shown in Figure 4 is to be designed for minimum material volume. The design

variables are the width b and height h at each of N segments. We wish to design the beam subject to

limits on stress (calculated at the left end of each segment) and the geometric requirement that the

height of any segment does not exceed twenty times the width. For this case, if we allowed the height

and width to be continuously variable, we can calculate the optimum to be 53,714. This is a theoretical

lower bound on the discretized problem solved here.
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Cross section

Figure 4 Cantilevered Beam

The bending moment at the left end of segment i is calculated as

[ ,i i]= P L +- _ ljMi

j=l

and the corresponding maximum bending stress is

Mih i

(_i- 2i i

where

(59)

(60)

bih_

Ii - 12

The design task is now defined as

(61)

Minimize:V =

N

Z bihili
i=l

(62)
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Subjectto:

(Yi
---1<0 i = 1, N (63)

h i-20b i<0 i = 1, N (64)

b i>l.0 i = 1, N (65)

h i_> 5.0 i = 1, N (66)

X i _ {0.1, 0.2, 0.3 ...... } (67)

Here _ is the allowable bending stress. This is a design problem in n = 2N variables. There are N

nonlinear constraints defined by Equations 63, Nlinear constraints defined by Equation 64, and 2Nside

constraints on the design variables defined by Equations 65 and 66. The design variables are required

to take on discrete values in increments of 0.1 as given in Equation 67.

The program provided here allows the user to input the number of beam segments (elements), NSEG,

as well as the print control value.Here, NSEG=500, 12,500 and 25,000 was used, to create problems

of 1,000, 25,000 and 50,000 design variables, respectively. You may change NSEG to increase or

decrease the problem size. The program is dimensioned to allow a value of NSEG up to 25,000, to yield

50,000 design variables. If you wish to solve even larger problems, be sure to increase the array sizes.

The BIGDOT solutions are shown in Table 4, where a constraint is considered active if its value is

greater than -0.05 (five percent tolerance). In each case, a discrete solution was found with minor

increase in the objective functions.

Note that the number of function and gradient evaluations does not change significantly with problem

size. This is a very significant feature of the algorithm developed here because it suggests that there is

no particular limit to the size of optimization problems we may consider.
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PARAMETER

Table 4 Optimization Results

INITIAL OPTIMUM OPTIMUM

VALUE NSEG=5,000 NSEG=12,500

(NDV=10,000) (NDV=25,000)

Continuous Optimization

OPTIMUM

NSEG=25,000

(NDV=50,000)

OBJECTIVE 100,000 53,816 53,737 53,747

MAX G 0.3393 4.5X10 -4 8.4X10 -4 9.0X10 -4

# OF INITIALLY

ACT IVE/VlOLATE D 1267 3,167 6,334
CONSTRAINTS

CYCLES 7 7 7

FUNCTION 235 242 248

EVALUATIONS

GRADIENT 44 45 47
EVALUATIONS

ACTIVE 9,995 24,986 49,972
CONSTRAINTS

ACTIVE SIDE 12 30 46
CONSTRAINTS

Additional Computations for Discrete Optimization

OBJECTIVE 54,865 54,859 54,866

MAX G 1.0X1 0-3 9.2X10 -9 9.5X10 -9

NUMBER OF 6 6 6
CYCLES

FUNCTION 85 79 83

EVALUATIONS

GRADIENT 15 10 13

EVALUATIONS

ACTIVE 9,584 23,967 47,826
CONSTRAINTS

22 54 82ACTIVE SIDE

CONSTRAINTS

The computer program for this example is given in Appendix A as Listing 3 and the BIGDOT output

for a 10,000 variable case is shown in Listing 4. Note that sufficient storage was not provided to store

the desired number of constraint gradients, so NGMAX was set to 3,484. Because BIGDOT required

more constraint gradients than this during optimization, reduced storage logic was used. This increased

the run time, but otherwise had no effect on the optimum.

24



4.6.1 Test Case - Topology Optimization Using GENESIS

The Michell truss problem is commonly used to verify topology design algorithms. Figure 5 shows the

entire design domain including the circular non-designable region, whose perimeter is completely
fixed.

Figure 5 Designable Region and Boundary Conditions

The optimization task is to minimize strain energy, subject to a maximum mass constraint of 20%. The

BIGDOT optimizer was incorporated into the GENESIS structural optimization program to solve this

problem. The topology optimization task consisted of 7,588 design variables, but only one nonlinear

constraint. At the optimum, almost all variables were at their lower or upper bound.

The solution shown in figure 6 appears to be a truss-like structure and is similar to the theoretical
solution.

Figure 6 Optimum Topology
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Figure 7 is the theoretical Michell truss solution.

Figure 7 Mitchell Truss

The initial value of the objective function was 2,917 and the optimum was 102.06. This problem is of

the class where there is only one constraint, but where almost all design variables end at their lower or

upper bound. It should be noted that the DOT optimizer would require approximately 500 Mb of

storage to solve this problem.

This same problem was solved again, but with a much finer mesh, consisting of 47,335 quadrilateral

elements and 142,824 degrees of freedom. This resulted in a total of 35,017 design variables. For this

case, the initial objective function value was 24,762 and the optimum was 225.02. The optimum

topology is essentially the same as that shown in Figure 6.

4.6.2 Test Case - Wing Design Using GENESIS

As a final example, a wing structure was designed using both DOT and the BIGDOT code within

GENESIS. This structure was modeled with almost 50,000 degrees of freedom and was subjected to 8

load cases. There were 1,251 independent and 1,384 dependent design variables, designing isotropic

rod and composite membrane elements, and a total of 8,400 constraints. This problem uses numerous

"synthetic" functions to impose manufacturing constraints, and the gradients of these responses are

relatively time consuming in the approximate optimization.

Table 5 summarizes the results using DOT as well as BIGDOT. The initial value of the objective

function was normalized to 1000.00 for each case, to protect potentially confidential information. It is

significant that the solution obtained by DOT was found only after considerable effort to "fine tune"

the control parameters. This is a particularly difficult problem for DOT because many variables have

very little effect on the objective but, if they are changed enough, have a significant overall effect on

the optimum. The SUMT method seem to deal with this situation well so that BIGDOT achieved an

optimum very close to the best known solution. Also, note that the design time is dramatically reduced

using BIGDOT because the DOT optimizer required a great deal of CPU time within the optimization

algorithm itself while BIGDOT required a fraction as much time.

Table 5 Objective Function and Computation Time

CPU Time per Time in the

Method Optimum GENESIS Approximate

Design Cycle Optimization

DOT 955.07 2,870 2,643

BIGDOT 953.98 345 147
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4.7 Conclusions

A new optimization algorithm has been created along with its implementation into a commercial

software product. While the basic concept is an exterior penalty function approach, enhancements have

been made to improve efficiency and reliability, as well as to deal with discrete variable problems.

The BIGDOT software created here overcomes the key problems encountered with existing software

while offering some very attractive features.

1. It requires very little computer memory.

2. It does not solve a complex and time intensive direction finding problem.

3. It handles redundant constraints (constraints with the same values and gradients) easily.

4. It deals with equality constraints with no loss in efficiency or reliability.

5. It solves discrete variable problems to efficiently produce a "good" discrete solution.

6. It scales very well. That is, the efficiency is about the same regardless of problem size.

With the BIGDOT software, we are now able to address problems of very large scale. While the

methods implemented here are not as efficient as existing modem methods, as measured by the number

of function and gradient evaluations, they are much more efficient in terms of memory and internal

CPU requirements.

5.0 Potential Applications

The immediate application of the software developed here will be within our own structural optimiza-

tion software, GENESIS. The other companies who presently license the DOT optimizer for use in

their structural optimization software are likely short term users of this software. Finally, as topology

optimization software becomes more commonplace, this is expected to generate a market opportunity.

BIGDOT has already been incorporated into the AFT Mercury software from Applied Flow Technol-

ogy for optimizing pumping systems [39].

Additionally, BIGDOT is being incorporated into Version 3 of the VisualDOC [40] software from

VR&D. VisualDOC is a general purpose, graphics based, program for adding optimization to almost

any analysis.

The second short term potential application is by research organizations, both academic and govern-

ment. An important research area is in methods to solve ever larger structural optimization problems.

One possible approach, which has been the subject of research dating back to 1965, is the concept of

simultaneous analysis and design. Because the number of degrees of freedom in analysis commonly

exceeds 500,000 in industrial applications, the ability to efficiently perform the optimization task is
clear.

As multidiscipline design optimization becomes more accepted, the need to deal with large numbers

of design variables and constraints will increase. This software will provide the needed research tools

as well as the necessary optimizer for commercial applications in MDO, without the necessity of

decomposing the overall problem into smaller optimization tasks.

Finally, as we consider computers of the future, massive parallelization becomes an important technol-

ogy. While the present proposed software does not address this issue explicitly, it provides a research
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tool for studyingconceptsfor partitioningof theoptimizationprocess.Becausetheproposedalgo-
rithmsessentiallyoperatein vectorspace(asopposedto matrixspace),it maybepossibletopartition
thevectoroperationsandsolvethemin parallel.

6.0 Commercialization Plans

VR&D has an established clientele using the GENESIS, DOT and VisualDOC software of over 100

companies and universities. Also, eight companies presently use the DOT optimizer embedded in their
own commercial software.

It is significant that the BIGDOT software is the second VR&D product funded by a Phase II SBIR

contract. The first product, VisualDOC, already has an established clientele and BIGDOT will

immediately enhance its capabilities.

Our existing client base will provide the basis for marketing of the new software. Additionally, specific

marketing strategies include the following:

1. VR&D has and will publish the theory and capabilities at conferences as well as professional

journals which emphasize software products and applications.

2. VR&D will promote the software on our Internet Home Page. This medium has already demon-

strated itself to be a powerful means of advertising to engineers who seek information on

optimization capabilities. Also, our newsletter will be used as a marketing tool. While its

distribution is limited to about 2,000, the international recipients are predisposed to use our

products, based on our strong reputation for advanced technology.

3. VR&D markets Dr. Vanderplaats' textbook on numerical optimization, which is now used by

several universities. Together with the text, we provide a CD-ROM containing the VisualDOC,
DOT and GENESIS software for educational use. BIGDOT will be added to this.

4. Finally, VR&D will target professional publications which emphasize CAE applications as a

mechanism for informing candidate clients. For example, the Computer Aided Engineering

magazine has published articles complimentary to the GENESIS program. This and similar

magazines reach a very wide audience that is receptive to new engineering software.

It may be noted here that we do not propose an advertising campaign in professional journals. This is

simply because the cost of such marketing is very high and the benefit has not been demonstrated. Past

efforts with this approach have demonstrated that the benefit/cost ratio is quite low as compared on

relying on our reputation to produce sales via direct contacts and "word of mouth."

VR&D markets its products worldwide. In the U.S. and many other countries, we distribute our

products directly. In Japan, we have three distributors. Also, we have distributors in Korea, France,

Australia, India, Spain and China. Each of these will be responsible for marketing in neighboring

countries as well. Each distributor will market the BIGDOT software together with our other software.

In summary, our principal marketing strategy is to 1) work with our existing clients to promote our new

software offerings, 2) target engineers who can use such software with their applications, 3) develop

an aggressive distributor network, 4) provide software in Dr. Vanderplaats' textbook and 5) promote

the new software capabilities via the Internet, professional conferences, and professional journals. Our

experience has shown that this creates a committed clientele which will further use and promote our

products.
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APPENDIX A

SAMPLE PROGRAMS AND OUTPUT

This appendix contains the program for solving the unconstrained spring-mass system shown in Figure

3 as Listing 1. The output for a 1,000 variable problem is shown in Listing 2.

Listing 3 is the program for solving the cantilevered beam of Figure 4 and Listing 4 is the output for a

10,000 variable beam optimization.
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LISTING 1" SPRING-MASS SYSTEM FORTRAN PROGRAM

c

c

c

i0

SAMPLE PROGRAM. NMASS HANGING MASS ANALYSIS.

DIMENSION X(50000),XL(50000),XU(50000),G(1),

*WK(40000000),IWK(300000),RPRM(20),IPRM(20),DUMY(50000)

DIMENSION IDISCR(101000),DISCRT(10000)

COMMON/JUNK/IJUNK

DEFINE NRWK, NRIWK.

NRWK=40000000

NRIWK=300000

NUMBER OF MASSES IS NMASS

WRITE(*,*)' INPUT NMASS, IPRINT, METHOD, NDSCRT'

READ(*,*)NMASS,IPRINT,METHOD,NDSCRT

IF(NMASS.EQ.0) STOP

C

INFO=0

C

C DEFINE NDV,NCON.

C TWO TIMES NMASS DESIGN VARIABLES.

NDV=2*NMASS

C NO CONSTRAINTS.

NCON=0

C

C --- TEMP FOR TESTING DISCRETE VARIABLES

C

IF(METHOD.EQ.4.AND.INFO.EQ.0) THEN

DISCRETE VARIABLE INFORMATION

4O

C

C

DO 20 I=I,NDV

IDISCR(I)=I

20 IDISCR(NDV+I)=6000

DO 30 I=i,6000

DISCRT(I)=.I*FLOAT(I)-300.

30 CONTINUE

ENDIF

C

C --- END TEMP

C

C DEFINE INITIAL DESIGN.

DO 40 I=I,NMASS

X(I)=0.0

X (I+NMASS) =0.0

CONTINUE

NA=NDV+I

MINIMIZE

MINMAX=-I

OPTIMIZE.

CALL EVAL(OBJ,X,G,NMASS,WK,WK(NA),NDV, INFO)
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c

c

c

50

c

c

60

70

c

c

i0

c

c

DEFINE BOUNDS.

DO 50 I=I,NMASS

LOWER BOUNDS.

XL (I) =-5000.

XL (I+NMASS) =-5000.

UPPER BOUNDS

XU(I) =5000.

XU(I+NMASS) =5000.

CONTINUE

INITIALIZE INFO TO ZERO.

INFO = 0

ZERO RPRM AND IPRM.

DO 60 I=i,20

RPRM (I) =0.0

IPRM(I) =0

IPRM (16) =NDSCRT

CONTINUE

CALL ALLDOT (INFO, METHOD, I PRINT, NDV, NCON, X, XL, XU, OBJ, MINMAX,

IG, RPRM, IPRM,WK, NRWK, IWK, NRIWK, DISCRT, IDISCR)

FINISHED?

NGT= 0

CALL EVAL (OBJ,X, G,NMASS ,WK,WK (NA) ,NDV, INFO)

FINISHED?

IF (INFO.EQ. 0) GO TO i0

GO TO 70

END

SUBROUTINE EVAL (OBJ,X,G,NMASS,DF,A,NDV,INFO)

DIMENSION X(*),G(*),DF(*) ,A(NDV,*)

IF (INFO.GT. i) THEN

DO i0 I=I,NDV

DF (I) =0.

CONTINUE

ENDIF

NMASS MASSES.

AL=60.

ALI=AL/(FLOAT (NMASS) +i. )

PEI=0.

PE2=0.

XI=0.

YI=0.

DO 20 I=I,NMASS

J=I - 1

WI=50. *FLOAT (I)

PEI=PEI+WI*X (I+NMASS)

IF(INFO.EQ.2) DF(I+NMASS)=DF(I+NMASS)+WI

XIPl=X (I)

YIPI=X (I +NMASS)

AKI=500. +200. * ( (FLOAT (NMASS)/3. -FLOAT (I)) *,2)

DLII=SQRT((ALI+XIPI-XI)**2+ (YIPI-YI)**2)

DLI=DLII-ALI
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20

C

C

C

IF (INFO. EQ. 2) THEN

DF (I) =DF (I) +AKI*DLI* (ALI+XIPI-XI)/DLII

DF (I+NMASS) =DF (I+NMASS) +AKI*DLI* (YIPI-YI)/DLII

IF (J.GT. 0) THEN

DF (J) =DF (J) -AKI*DLI* (ALI+XIPI-XI)/DLII

DF (J+NMASS) =DF (J+NMASS) -AKI*DLI* (YIPI-YI)/DLII

ENDIF

ENDIF

PE2=PE2+0.5*AKI* (DLI**2)

XI=XIPI

YI=YIPI

CONTINUE

LAST SPRING

AKI=500.+200.*((FLOAT(NMASS)/3.-FLOAT(NMASS+I))**2)

DLII=SQRT((ALI-XI)**2+YI**2)

DLI=DLII-ALI

PE2=PE2+0.5*AKI* (DLI**2)

IF(INFO.EQ.2) THEN

DF (NMASS) =DF (NMASS) -AKI*DLI* (ALI-XI)/DLII

DF(NDV)=DF(NDV)+AKI*DLI*YI/DLII

ENDIF

OBJ=PEI+PE2

RETURN

END
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LISTING 2: SPRING-MASS SYSTEM OUTPUT: NMASS = 5,000

BBBBB III

B B I

BBBBB == I

B B I

BBBBB III

GGGGG DDDDD 00000 TTTTTTT

G D D 0 0 T

== G GG == D D == 0 * 0 == T

G G D D 0 0 T

GGGGG DDDDD 00000 T

DESIGN OPTIMIZATION TOOLS

(C) COPYRIGHT, 2001

VANDERPLAATS R&D

ALL RIGHTS RESERVED, WORLDWIDE

BETA VERSION

CONTROL PARAMETERS

NUMBER OF DECISION VARIABLES, NDV =

NUMBER OF CONSTRAINTS, NCON =

PRINT CONTROL PARAMETER, IPRINT =

THE OBJECTIVE FUNCTION WILL BE MINIMIZED

i0000

0

2

-- SCALAR PROGRAM PARAMETERS

REAL PARAMETERS

i) PENALT = 1.00000E+00

2) PMULT = 5.00000E+00

3) CTMIN = 3.00000E-03

4) DABSTR = 1.00000E-10

5) DELSTR = 1.00000E-03

INTEGER PARAMETERS

i) NGMAX = 0

2) ISCAL = 1

3) JTMAX = 50

4) ITRMST = 2

5) ITMAX = i00

DABOBJ = 1.00000E-10

DELOBJ = 1.00000E-03

PENLTD = 1.00000E-02

PMULTD = 5.00000E+00

6

7

8

9

i0

ITRMOP = 2

IWRITE = 6

JWRITE = 0

MAXINT = 2000000000

NDISCR = 1
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STORAGE REQUIREMENTS

ARRAY DIMENSION USED

WK 40000000 110040

IWK 300000 30071

-- INITIAL FUNCTION VALUES

OBJ = 0.0000

-- BEGIN OPTIMIZATION

-- BEGIN CONTINUOUS CYCLE 1

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 0.00000E+00 OBJECTIVE = 0.00000E+00

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.57357E+09 OBJECTIVE = -2.57357E+09

-- OPTIMIZATION IS COMPLETE

NUMBER OF UNCONSTRAINED MINIMIZATIONS = 1

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERIA

-- OPTIMIZATION RESULTS

OBJECTIVE, F(X) = -2.57357E+09

FUNCTION CALLS = 507

GRADIENT CALLS = i00

-- BEGIN DISCRETE VARIABLE OPTIMIZATION

-- INITIAL FUNCTION VALUES

OBJ = -2.57357E+09
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-- BEGIN DISCRETE CYCLE 1

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.57357E+09 OBJECTIVE = -2.57357E+09

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.62031E+09 OBJECTIVE = -2.62031E+09

THERE ARE 21 DISCRETE VALUES

-- BEGIN DISCRETE CYCLE 2

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.62031E+09 OBJECTIVE = -2.62031E+09

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.62102E+09 OBJECTIVE = -2.62102E+09

THERE ARE 24 DISCRETE VALUES

-- BEGIN DISCRETE CYCLE 3

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.62102E+09 OBJECTIVE = -2.62102E+09

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.27744E+09 OBJECTIVE = -2.27744E+09

THERE ARE i0000 DISCRETE VALUES

-- BEGIN DISCRETE CYCLE 4

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.27744E+09 OBJECTIVE = -2.27744E+09

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.27745E+09 OBJECTIVE = -2.27745E+09

THERE ARE i0000 DISCRETE VALUES

-- BEGIN DISCRETE CYCLE 5

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.27745E+09 OBJECTIVE = -2.27745E+09

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = -2.27745E+09 OBJECTIVE = -2.27745E+09

THERE ARE i0000 DISCRETE VALUES
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-- OPTIMIZATION IS COMPLETE

NUMBER OF UNCONSTRAINED MINIMIZATIONS =

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

THERE ARE i0000 DISCRETE VALUES

TERMINATION CRITERIA

RELATIVE CONVERGENCE CRITERION WAS MET FOR 2 CONSECUTIVE ITERATIONS

-- OPTIMIZATION RESULTS

OBJECTIVE, F(X) = -2.27745E+09

FUNCTION CALLS = 653

GRADIENT CALLS = 127
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LISTING 3: CANTILEVER BEAM ANALYSIS FORTRAN PROGRAM

c

c

c

i0

SAMPLE PROGRAM. NSEG ELEMENT BEAM DESIGN.

DIMENSION X(50000),XL(50000),XU(50000),G(50001),

*WK(40000000),IWK(300000),RPRM(20),IPRM(20)

DIMENSION IDISCR(101000),DISCRT(10000)

COMMON/JUNK/IJUNK

DEFINE NRWK, NRIWK.

NRWK=40000000

NRIWK=300000

NUMBER OF BEAM SEGMENTS IS NSEG

CONTINUE

WRITE(*,*)' INPUT NSEG, IPRINT, METHOD, NDSCRT'

READ(*,*)NSEG,IPRINT,METHOD,NDSCRT

IF (NSEG.EQ. 0) STOP

INFO=0

DEFINE NDV,NCON.

TWO TIMES NSEG DESIGN VARIABLES.

NDV=2*NSEG

TWO TIMES NSEG + 1 CONSTRAINTS.

NCON=2*NSEG

C

C --- DISCRETE VALUES

C

IF(METHOD.EQ.4.AND.INFO.EQ.0)

20

30

C

C

C

4O

C

DISCRETE VARIABLE INFORMATION

DO 20 I=I,NDV

IDISCR(I)=I

IDISCR(NDV+I)=6000

DO 30 I=i,6000

DISCRT(I)=.I*FLOAT(I)

CONTINUE

ENDIF

DEFINE INITIAL DESIGN.

DO 40 I=I,NSEG

INITIAL VALUES.

X(I)=5.0

X(I+NSEG)=40.0

CONTINUE

NA=NDV+I

MINIMIZE

MINMAX=-I

THEN
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5O

C

60

70

i0

20

C

OPTIMIZE.

CALL EVAL(OBJ,X,G,NSEG,WK,WK(NA),NDV,INFO,NGT,IWK)

DEFINE BOUNDS.

DO 50 I=I,NSEG

LOWER BOUNDS.

XL(I)=0.5

XL(I+NSEG)=5.

UPPER BOUNDS

XU(I)=I00.

XU(I+NSEG)=I00.

CONTINUE

INITIALIZE INFO TO ZERO.

INFO=0

ZERO RPRM AND IPRM.

DO 60 I=i,20

RPRM (I) =0.0

IPRM(I) =0

CONTINUE

IPRM(16)=NDSCRT

CONTINUE

CALL ALLDOT(INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU, OBJ,MINMAX,

IG,RPRM,IPRM,WK,NRWK, IWK,NRIWK,DISCRT,IDISCR)

NGT=IPRM(20)

NA=NDV+I

CALL EVAL(OBJ,X,G,NSEG,WK,WK(NA),NDV,INFO,NGT,IWK)

FINISHED?

IF(INFO.EQ.0) GO TO i0

GO TO 70

END

SUBROUTINE EVAL (OBJ,X,G,NSEG,DF,A,NDV, INFO,NGT, IC)

DIMENSION X(*),G(*),DF(*),A(NDV,*),IC(*)

IF (INFO.GT. i) THEN

DO 20 I=I,NDV

DF (I) =0.

IF(NGT.GT.0) THEN

DO i0 J=I,NGT

A(I,J) =0.

CONTINUE

ENDIF

CONTINUE

ENDIF

NSEG-ELEMENT BEAM.

P=50000.

E=2.0E+7

AL=500.

ALI=AL/FLOAT(NSEG)

SIG=I4000.

YMX=2.5
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30

40

VOLUME, STRESS CONSTRAINTS,

VOL= 0.

ALA= 0.

Y=0.

YP=0.

DO 40 I=I,NSEG

BI=X (I)

HI=X (I+NSEG)

VOL=VOL+ALI*BI*HI

AI=BI* (HI**3)/12.

ALA=ALA+ALI

AM=P* (AL+ALI-ALA)

SIGI=. 5*AM*X (I+NSEG)/AI

STRESS CONSTRAINTS.

G(I)=I.*(SIGI/SIG-I.)

GRADIENTS

IF (INFO.GT. i) THEN

DF

H/B CONSTRAINTS.

DF(1)=HI*ALI

DF(I+NSEG)=BI*ALI

IF(NGT.GT.0) THEN

DO 30 J=I,NGT

IF (IC(J) .EQ.I) THEN

A (I, J) =- 6. *AM/(BI**2*HI**2*SIG)

A(I+NSEG,J)=-12.*AM/(BI*HI**3*SIG)

ENDIF

IF(IC(J).EQ.I+NSEG) THEN

A(I,J)=-.2

A(I+NSEG,J)=0.01

ENDIF

CONTINUE

ENDIF

ENDIF

H/B CONSTRAINTS.

G(I+NSEG)=X(I+NSEG)-20.*X(I)

G(I+NSEG)=.01*G(I+NSEG)

Y=Y+.5*P*ALI*ALI*(AL-ALA+2.*ALI/3.)/(E*AI)+YP*ALI

YP=YP+P*ALI*(AL+.5*ALI-ALA)/(E*AI)

CONTINUE

OBJ=VOL

RETURN

END
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LISTING 4: CANTILEVER BEAM OUTPUT: NSEG = 5,000

BBBBB III

B B I

BBBBB == I

B B I

BBBBB III

GGGGG DDDDD 00000 TTTTTTT

G D D 0 0 T

G GG == D D == 0 * 0 == T

G G D D 0 0 T

GGGGG DDDDD 00000 T

DESIGN OPTIMIZATION TOOLS

(C) COPYRIGHT, 2001

VANDERPLAATS R&D

ALL RIGHTS RESERVED, WORLDWIDE

BETA VERSION

CONTROL PARAMETERS

NUMBER OF DECISION VARIABLES, NDV = i0000

NUMBER OF CONSTRAINTS, NCON = i0000

PRINT CONTROL PARAMETER, IPRINT = 2

THE OBJECTIVE FUNCTION WILL BE MINIMIZED

* * * REQUIRED STORAGE EXCEEDS USER INPUT VALUE FOR NRWK OR NRIWK

STORAGE INPUT DESIRED

NRWK 40000000 100150040

NRIWK 300000 40071

NGMAX WILL BE ADJUSTED IF POSSIBLE

INPUT OR DEFAULT VALUE OF NGMAX = i0000

* * * WILL TRY OPTIMIZATION WITH NGMAX = 3984
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-- SCALAR PROGRAM PARAMETERS

REAL PARAMETERS

i) PENALT = 1.00000E+00

2) PMULT = 5.00000E+00

3) CTMIN = 3.00000E-03

4) DABSTR = 1.00000E+01

5) DELSTR = 1.00000E-03

INTEGER PARAMETERS

i) NGMAX = 3984

2) ISCAL = 1

3) JTMAX = 50

4) ITRMST = 2

5) ITMAX = i00

DABOBJ = 1.00000E+01

DELOBJ = 1.00000E-03

PENLTD = 1.00000E-02

PMULTD = 5.00000E+00

6

7

8

9

i0

ITRMOP = 2

IWRITE = 6

JWRITE = 0

MAXINT = 2000000000

NDISCR = 1

STORAGE REQUIREMENTS

ARRAY DIMENSION USED

WK 40000000 39990040

IWK 300000 40071

-- INITIAL FUNCTION VALUES

OBJ = 1.00000E+05

MAXIMUM CONSTRAINT VALUE = 0.33929 IS CONSTRAINT NUMBER

-- BEGIN OPTIMIZATION

-- BEGIN CONTINUOUS CYCLE 1

MAXIMUM CONSTRAINT VALUE = 3.39286E-01 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 1267

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 1.00049E+05 OBJECTIVE = 1.00000E+05

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 4.50190E+04 OBJECTIVE = 3.89634E+04

MAXIMUM CONSTRAINT VALUE = 5.24156E-01 IS CONSTRAINT 4929
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-- BEGIN CONTINUOUS CYCLE 2

MAXIMUM CONSTRAINT VALUE = 5.24156E-01 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 9952

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 6.92413E+04 OBJECTIVE = 3.89634E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.19065E+04 OBJECTIVE = 5.03371E+04

MAXIMUM CONSTRAINT VALUE = I.I1826E-01 IS CONSTRAINT

-- BEGIN CONTINUOUS CYCLE 3

MAXIMUM CONSTRAINT VALUE = I.I1826E-01 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 9970

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.81841E+04 OBJECTIVE = 5.03371E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.33602E+04 OBJECTIVE = 5.30002E+04

MAXIMUM CONSTRAINT VALUE = 1.48099E-02 IS CONSTRAINT

-- BEGIN CONTINUOUS CYCLE 4

MAXIMUM CONSTRAINT VALUE = 1.48099E-02 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 9971

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.48000E+04 OBJECTIVE = 5.30002E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.36579E+04 OBJECTIVE = 5.35722E+04

MAXIMUM CONSTRAINT VALUE = 5.48092E-03 IS CONSTRAINT

4929

4965

4965

4976

4976

9875
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-- BEGIN CONTINUOUS CYCLE 5

MAXIMUM CONSTRAINT VALUE = 5.48092E-03 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 9698

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.40005E+04 OBJECTIVE = 5.35722E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37180E+04 OBJECTIVE = 5.37014E+04

MAXIMUM CONSTRAINT VALUE = 1.64821E-03 IS CONSTRAINT

-- BEGIN CONTINUOUS CYCLE 6

MAXIMUM CONSTRAINT VALUE = 1.64821E-03 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 9250

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37845E+04 OBJECTIVE = 5.37014E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37444E+04 OBJECTIVE = 5.37290E+04

MAXIMUM CONSTRAINT VALUE = 1.43720E-03 IS CONSTRAINT

-- BEGIN CONTINUOUS CYCLE 7

MAXIMUM CONSTRAINT VALUE = 1.43720E-03 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 4977

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.38058E+04 OBJECTIVE = 5.37290E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37413E+04 OBJECTIVE = 5.37406E+04

MAXIMUM CONSTRAINT VALUE = 4.47931E-04 IS CONSTRAINT

9875

9945

9945

9945

9945

9974
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-- OPTIMIZATION IS COMPLETE

NUMBER OF UNCONSTRAINED MINIMIZATIONS =

CONSTRAINT TOLERANCE, CT =-5.00000E-02

THERE ARE 9995 ACTIVE CONSTRAINTS AND

THERE ARE 12 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERIA

RELATIVE CONVERGENCE CRITERION WAS MET FOR

-- OPTIMIZATION RESULTS

OBJECTIVE, F(X) =

MAXIMUM CONSTRAINT VALUE =

FUNCTION CALLS = 235

GRADIENT CALLS = 44

5.37406E+04

4.47931E-04

7

CTMIN = 3.00000E-03

0 VIOLATED CONSTRAINTS

2 CONSECUTIVE ITERATIONS

IS CONSTRAINT NUMBER 9974

-- BEGIN DISCRETE VARIABLE OPTIMIZATION

-- INITIAL FUNCTION VALUES

OBJ = 53741.

MAXIMUM CONSTRAINT VALUE = 4.47931E-04 IS CONSTRAINT NUMBER

-- BEGIN DISCRETE CYCLE 1

MAXIMUM CONSTRAINT VALUE = 4.47931E-04 IS CONSTRAINT 9974

NUMBER OF CRITICAL CONSTRAINTS = 1092

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37945E+04 OBJECTIVE = 5.37406E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.37879E+04 OBJECTIVE = 5.37378E+04

MAXIMUM CONSTRAINT VALUE = 8.48126E-05 IS CONSTRAINT 9938

THERE ARE 66 DISCRETE VALUES

9974
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-- BEGIN DISCRETE CYCLE 2

MAXIMUM CONSTRAINT VALUE = 8.48126E-05 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 1114

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.39882E+04 OBJECTIVE = 5.37378E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.39871E+04 OBJECTIVE = 5.37370E+04

9938

MAXIMUM CONSTRAINT VALUE = 6.10089E-05 IS CONSTRAINT

THERE ARE 73 DISCRETE VALUES

9938

-- BEGIN DISCRETE CYCLE 3

MAXIMUM CONSTRAINT VALUE = 6.10089E-05 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 1023

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.49873E+04 OBJECTIVE = 5.37370E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = I.I0861E+07 OBJECTIVE = 5.37493E+04

9938

MAXIMUM CONSTRAINT VALUE = 9.05131E-02 IS CONSTRAINT

THERE ARE i0000 DISCRETE VALUES

4970

-- BEGIN DISCRETE CYCLE 4

MAXIMUM CONSTRAINT VALUE = 9.05131E-02 IS CONSTRAINT 4970

NUMBER OF CRITICAL CONSTRAINTS = 4825

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.52156E+07 OBJECTIVE = 5.37493E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.51171E+04 OBJECTIVE = 5.48645E+04

MAXIMUM CONSTRAINT VALUE = 1.00003E-03 IS CONSTRAINT 6720

THERE ARE i0000 DISCRETE VALUES
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-- BEGIN DISCRETE CYCLE 5

MAXIMUM CONSTRAINT VALUE = 1.00003E-03 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 88

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.61272E+04 OBJECTIVE = 5.48645E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 5.61296E+04 OBJECTIVE = 5.48645E+04

6720

MAXIMUM CONSTRAINT VALUE = 1.00003E-03 IS CONSTRAINT

THERE ARE i0000 DISCRETE VALUES

6720

-- BEGIN DISCRETE CYCLE 6

MAXIMUM CONSTRAINT VALUE = 1.00003E-03 IS CONSTRAINT

NUMBER OF CRITICAL CONSTRAINTS = 88

AT START OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 6.11899E+04 OBJECTIVE = 5.48645E+04

AT END OF UNCONSTRAINED MINIMIZATION SUB-PROBLEM

PSEUDO-OBJECTIVE = 6.11899E+04 OBJECTIVE = 5.48645E+04

6720

MAXIMUM CONSTRAINT VALUE = 1.00003E-03 IS CONSTRAINT

THERE ARE i0000 DISCRETE VALUES

6720

-- OPTIMIZATION IS COMPLETE

NUMBER OF UNCONSTRAINED MINIMIZATIONS =

CONSTRAINT TOLERANCE, CT =-5.00000E-02

THERE ARE 9584 ACTIVE CONSTRAINTS AND

THERE ARE 22 ACTIVE SIDE CONSTRAINTS

THERE ARE i0000 DISCRETE VALUES

TERMINATION CRITERIA

RELATIVE CONVERGENCE CRITERION WAS MET FOR

ABSOLUTE CONVERGENCE CRITERION WAS MET FOR

6

CTMIN = 3.00000E-03

0 VIOLATED CONSTRAINTS

2 CONSECUTIVE ITERATIONS

2 CONSECUTIVE ITERATIONS
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-- OPTIMIZATION RESULTS

OBJECTIVE, F(X) =

MAXIMUM CONSTRAINT VALUE =

FUNCTION CALLS = 320

GRADIENT CALLS = 59

FINAL OBJ = 54864.53

5.48645E+04

1.00003E-03 IS CONSTRAINT NUMBER 6720
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